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Introduction
Background: Bayesian neural networks
(BNNs) have drawn extensive interest due
to the unique probabilistic representation
framework. However, Bayesian neural net-
works have limited publicized deployments
because of the relatively poor model perfor-
mance in real-world applications.

Goal: Explore the reason of the relatively
poor performance of Bayesian neural net-
works, and improve the performance by tar-
geted solutions.

Key Contributions:
• We argue that the randomness of sampling

in Bayesian neural networks causes errors
in updating parameters during training and
models with poor performance in testing.

• We propose to train Bayesian neural net-
works with Adversarial Distribution. It
can improve the worst performance of the
model in multiple samplings and enhance
its predictive performance.

• We further propose the Adversarial Sam-
pling method as a practical approximation.

• Verify the theoretical analysis and the ef-
fectiveness of the proposed method by ex-
periments under multiple situations.

Explanation of the Poor Performance
Because of the randomness of sampling during training and testing,
• There are some errors in updating the parameters.
• Some models with poor performance are yielded in random sampling.
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Training with Adversarial Distribution
Adversarial distribution Qadv:

Qadv = argmax
W [Qadv,Qθ]≤d

− EW∼Qadv(W) logP (D|W). (1)

Adversarial Loss Ladv:

Ladv = −EW∼Qadv(W) logP (D|W) (2)

Total learning target:

θ = argmin
θ

((1− λ) · Lp + λ · Ladv + Lr) , (3)

Experiments & Results
Verification
• The change trends of models trained with

Adversarial Sampling are more stable and
steady.

• Models trained without Adversarial Sam-
pling distribute more dispersed.
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Improvement on Model Performance
Models trained with Adversarial Sampling
have much higher accuracies.

Influence of the parameter λ
Using a suitable λ is important.
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Combination with uncertainty estimation
We present the ensembled accuracies where
only partial predictions are retained accord-
ing to the total uncertainty. Adversarial Sam-
pling is still helpful under this scenario.

Combination with Bayesian Fine-tune
Models trained with the Adversarial Sam-
pling method also perform obviously bet-
ter compared with original models on this
higher baseline.

GitHub Repository:
AISIGSJTU/AS

The Ability of Uncertainty Estimation
Models trained with Adversarial Sampling
keep the ability to model uncertainties.

Adversarial Sampling
The calculation of Qadv analytically is difficult. We propose an iter-
ative approach, Adversarial Sampling, as an approximation. We first
sample each parameter from the original parameter distribution.

wadv ∼ N(µ, σ2). (4)

Then we adversarially perturb the parameterw by repeatedly perturb
the parameters on the opposite direction of gradient.

wadv = wadv + α · σ · sign (grad (wadv)) . (5)

We adjust the scope of the adversarial perturbation using the stan-
dard deviation of the parameter σ, since a parameter with a larger
standard deviation has higher randomness in regular sampling.

• Denoting the iteration times as N , the total distance between w
and wadv satisfies

‖w − wadv‖ ≤ N · α. (6)

• It satisfies W [Qadv, Qθ] ≤ d by setting d = N · α.
• Many wadvs create an approximation of Qadv .
• In practice, the parameter w is yielded by a random unit Gaus-

sian noise ε ∼ N (0, 1): w = µ + ε · σ with the popularly used
reparameterization trick.

• Therefore, we just need to update the random noise ε with the
same step size α, making Adversarial Sampling simple to imple-
ment.


