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Experiments & Results

Verification

Explanation of the Poor Performance

Because of the randomness of sampling during training and testing,
e There are some errors in updating the parameters.
e Some models with poor performance are yielded in random sampling.

Introduction

Background: Bayesian neural networks
(BNNs) have drawn extensive interest due
to the unique probabilistic representation
framework. However, Bayesian neural net-
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 The change trends of models trained with
Adversarial Sampling are more stable and
steady.
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model in multiple samplings and enhance
its predictive performance.
 We further propose the Adversarial Sam-
pling method as a practical approximation.
e Verity the theoretical analysis and the et-

Combination with Bayesian Fine-tune
Models trained with the Adversarial Sam-
pling method also perform obviously bet-
ter compared with original models on this
higher baseline.

Adversarial Loss L4y :
adv Combination with uncertainty estimation

We present the ensembled accuracies where
only partial predictions are retained accord-
ing to the total uncertainty. Adversarial Sam-

Ladv = —Ewn~q,q,(w) 10g P(DIW) (2)

Total learning target:
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ative approach, Adversarial Sampling, as an approximation. We first and w,q, satisfies
sample each parameter from the original parameter distribution. W
Wadw ~ N (1, 07). (4) W — Wadn|| < N - a. (6) = The Ability of Uncertainty Estimation GitHub Repository: s
Models trained with Adversarial Sampling AISIGSITU/AS =i,
Then we adversarially perturb the parameter w by repeatedly perturb o It satisfies W |Quav, Q9| < d by settingd = N - a. keep the ability to model uncertainties. O

the parameters on the opposite direction of gradient. e Many w,q,S create an approximation of ().

e In practice, the parameter w 1s yielded by a random unit Gaus-

Wady = Wady + o - 0 - sign (grad (Wado)) - () sian noise € ~ N (0,1): w = u + € - o with the popularly used
. . . . reparameterization trick.
We adjust the scope of the adversarial perturbation using the stan- « Therefore, we just need to update the random noise € with the

dard deviation of the parameter o, since a parameter with a larger
standard deviation has higher randomness in regular sampling.

same step size a, making Adversarial Sampling simple to imple-
ment.
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