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Introduction

• Bayesian neural networks have shown considerable potential and has been

widely used in many tasks.

• Bayesian neural networks have indeed few publicized deployments in

industrial practice despite the theoretical advancements.

• It is still unknown that why Bayesian neural networks can not learn a

suitable representation and perform well.

• In this paper, we present a reason and propose Adversarial Sampling as a

solution.
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Background

• The learning target of Bayesian neural networks with variational inference

is

L = −
∫
Qθ(W) log

P(W,D)
Qθ(W)

dW

= −EW∼Qθ(W) logP(D |W)︸ ︷︷ ︸
Lp

+KL (P(W)‖Qθ(W))︸ ︷︷ ︸
Lr

.

• It can be divided into two terms.

• The first term Lp is directly related to the predictions.

• The second term Lr can be seen as a regularization on the model

parameters.
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Explanation of the Poor Performance

Because of the randomness of sampling during training and testing,

• There are some errors in updating the parameters.

• Some models with poor performance are yielded in random sampling.

Validation:

• The curves of Bayesian neural networks fluctuate more sharply.

• Some models have much lower accuracies compared with others.
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Training with Adversarial Distribution

For dataset D, parameter distributions Qθ(W), we define

Qadv = argmax
W [Qadv ,Qθ ]≤d

− EW∼Qadv (W) logP(D|W). (1)

Adversarial Distribution

• W [Qadv ,Qθ] denotes the Wasserstein distance between Qadv and Qθ.

• d is a hyperparameter to control W [Qadv ,Qθ].
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Training with Adversarial Distribution

Corresponding to the Adversarial Distribution, the adversarial loss is defined as

Ladv = −EW∼Qadv (W) logP(D|W) (2)

Adversarial Loss

The total learning target is

θ = argmin
θ

((1− λ) · Lp + λ · Ladv + Lr ) (3)

Total Learning Target

• λ controls the ratio of training with Adversarial Distribution.
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Discussion

• The total learning target is equivalent to the original one when d = 0 or

λ = 0.

• Sampling from the Adversarial Distribution yields likely models with the

worst performance.

• Parameters updating accordingly guarantees the performance of the

regularly sampled models.
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Adversarial Sampling as an Approximation

• The calculation of Qadv analytically is difficult.

• We propose an iterative approach, Adversarial Sampling, as an

approximation.

1. Sample wadv from the parameter distribution N(µ, σ2).

2. Repeat multiple times:

• wadv = wadv + α · σ · sign (grad (wadv )).

Adversarial Sampling

• Generating wadv can be regarded as a sampling.

• Many Wadv s create an approximation of Qadv .
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Implementation of Adversarial Sampling

• With the reparameterization trick,

w is from

w = µ+ ε · σ, ε ∼ N (0, 1).

• It makes implementation easier

and training with gradient desent

possible by updating ε directly.
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Experiments: Verification of Motivation

• Models trained with Adversarial Sampling have lower error rates.

• The change trends of models trained with Adversarial Sampling are more

stable and steady.
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Experiments: Verification of Motivation

• The models trained without Adversarial Sampling distribute more

dispersed.

• The accuracies of models trained with Adversarial Sampling are clearly

higher.
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Selection of Hyperparameter λ

• Model performance gets improved when λ increases from 0 to 0.8.

• There is a significant drop in performance when λ reaches 1.0.

• It validates the necessity of the introduction of parameter λ.
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Improvement on Model Performance

We present three kinds of accuracies:

• The lowest accuracy and the highest accuracy among 100 sampled

models.

• The accuracy of the ensembled model.

Models trained with Adversarial Sampling have much higher accuracies.
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Combination with Bayesian Fine-tune

• Bayesian fine-tune is an effective method to improve the performance.

• Models trained with Adversarial Sampling also perform better under this

higher baseline.
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Uncertainty Estimation

• We present the ensembled accuracies where only partial predictions are

retained according to the total uncertainty.

• Adversarial Sampling is still helpful under this scenario.
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Conclusion

• We argue that the randomness of sampling in Bayesian neural networks

causes the performance decrease.

• We propose training with Adversarial Distribution as a theoretical

solution.

• We further propose Adversarial Sampling as an approximation in practice.

• Extensive experiments validate our proposal.
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