
Exploring Diffusion Models’ Corruption Stage in
Few-Shot Fine-tuning and Mitigating with Bayesian

Neural Networks

Xiaoyu Wu1†, Jiaru Zhang1†, Yang Hua2, Bohan Lyu3, Hao Wang4, Tao Song1∗, Haibing Guan1

Shanghai Jiao Tong University1, Queen’s University Belfast2,
Tsinghua University3, Louisiana State University4

{wuxiaoyu2000, jiaruzhang, songt333, hbguan}@sjtu.edu.cn
Y.Hua@qub.ac.uk, lvbh22@mails.tsinghua.edu.cn, haowang@lsu.edu

†Equal Contribution ∗Corresponding Author

Abstract

Few-shot fine-tuning of Diffusion Models (DMs) is a key advancement, signifi-
cantly reducing training costs and enabling personalized AI applications. How-
ever, we explore the training dynamics of DMs and observe an unanticipated
phenomenon: during the training process, image fidelity initially improves, then
unexpectedly deteriorates with the emergence of noisy patterns, only to recover
later with severe overfitting. We term the stage with generated noisy patterns as
corruption stage. To understand this corruption stage, we begin by theoretically
modeling the one-shot fine-tuning scenario, and then extend this modeling to more
general cases. Through this modeling, we identify the primary cause of this cor-
ruption stage: a narrowed learning distribution inherent in the nature of few-shot
fine-tuning. To tackle this, we apply Bayesian Neural Networks (BNNs) on DMs
with variational inference to implicitly broaden the learned distribution, and present
that the learning target of the BNNs can be naturally regarded as an expectation
of the diffusion loss and a further regularization with the pretrained DMs. This
approach is highly compatible with current few-shot fine-tuning methods in DMs
and does not introduce any extra inference costs. Experimental results demonstrate
that our method significantly mitigates corruption, and improves the fidelity, qual-
ity and diversity of the generated images in both object-driven and subject-driven
generation tasks.

1 Introduction

Recent years have witnessed a surge in the development of Diffusion Models (DMs). These models
have showcased extraordinary capabilities in various applications, such as image editing [15] and
video editing [31], among others. Particularly noteworthy is the advent of few-shot fine-tuning
methods [12, 19, 23], in which a pretrained model is fine-tuned to personalize generation based
on a small set of training images. These approaches have significantly reduced both memory and
time costs in training. Moreover, these techniques offer powerful tools for adaptively generating
images based on specific subjects or objects, embodying personalized AI and making AI accessible
to everyone. In recent years, this innovation has even fostered the emergence of several communities,
such as Civitai [6], which boasts tens of thousands of checkpoints and millions of downloads.

Despite the importance and widespread usage of few-shot fine-tuning methods in DMs, these methods
often struggle or even fail when transferring from a large distribution (i.e., pretrained DMs’ learned
distribution) to a much smaller one (i.e., fine-tuned DMs’ learned distribution) using limited data
[19, 23]. We are the first to identify when and how these failures occur, and find that they are related

Preprint. Under review.

ar
X

iv
:2

40
5.

19
93

1v
1

 [
cs

.C
V

]
 3

0
M

ay
 2

02
4

Corruption
Stage

Training
Image:

(a) Few-shot fine-tuning process without BNNs.

Training
Image:

(b) Few-shot fine-tuning process with BNNs.

Figure 1: Image fidelity variation during few-shot fine-tuning with and without BNNs. Zero training
iteration indicates pretrained DMs. We fine-tune Stable Diffusion v1.5 with DreamBooth for 5 runs.

to an unusual phenomenon: As shown in Fig. 1, the similarity between the generated images and
the training images initially increases during fine-tuning, but then unexpectedly decreases, before
increasing once more. Ultimately, the DMs are only capable to generate images identical to the
training images. Notably, on the stage with decreasing similarity, we observe there appear some
unexpected noisy patterns on the generated images, therefore we name it as corruption stage.

To understand this corruption stage, we carry out further theoretical analysis on the few-shot fine-
tuning process. Specifically, we start from modeling a one-shot case, i.e., using only one image
during fine-tuning, and then extend it to more general cases. The modeling provides an estimation of
the error scale remaining in the generated images. We further show how corruption stages emerge
due to the limited learned distribution inherent in few-shot tasks with this modeling.

Based on the analysis above, the solution to corruption should concentrate on expanding the learned
distribution. However, this expansion remains challenging in few-shot fine-tuning. Traditional data
augmentation methods, when applied to generative models, often face significant problems such as
leakage [14] and a reduction in generation quality [7]. Inspired by recent advancements in Bayesian
Neural Networks (BNNs) [3], we propose to incorporate BNNs as a straightforward yet potent
strategy to implicitly broaden the learned distribution. We further present that its learning target
can be regarded as an expectation of the diffusion loss and an extra regularization loss related to
the pretrained model. These two losses can be adjusted to reach a trade-off between image fidelity
and diversity. Our method does not introduce any extra inference costs, and has good compatibility
with existing few-shot fine-tuning methods in DMs, including DreamBooth [23], LoRA [12], and
OFT [19]. Experimental results demonstrate that our method significantly alleviates the corruption
issues and substantially enhances the performance across various few-shot fine-tuning methods on
diverse datasets under different metrics.

In summary, our main contributions are as follows:

1. We observe an abnormal phenomenon during few-shot fine-tuning process on DMs: The image
fidelity first enhances, then unexpectedly worsens with the appearance of noisy patterns, before
improving again. We refer to the phase where noisy patterns appear as the corruption stage. We hope
this observation could inform future research on DMs.

2. We provide a theoretical modeling for few-shot fine-tuning process on DMs, explaining the
emergence and disappearance of the corruption stage. With this modeling, we pinpoint that the main
issue stems from the constrained learned distribution of DMs inherent in few-shot fine-tuning process.

3. We innovatively incorporate BNNs to broaden the learned distribution, hence relieving such
corruption. Experimental results confirm the effectiveness of this approach in improving on different
metrics, including text prompt fidelity, image fidelity, generation diversity, and image quality.

2 Related Works

2.1 Diffusion Models and Few-shot Fine-tuning

Diffusion Models (DMs) [11, 25–27] are generative models that approximate a data distribution
through the gradual denoising of a variable initially sampled from a Gaussian distribution. These

2

models involve a forward diffusion process and a backward denoising process. In the forward
process, the extent of the addition of a noise ε increases over time t, as described by the equation
xt =

√
αtx0+

√
1− αtε, where x0 is a given original image and the range of time t is {1, . . . , 1000}

in general cases. Conversely, in the backward process, the DMs aim to estimate the noise with a
noise-prediction module ϵθ and subsequently remove it from the noisy image xt. The discrepancy
between the actual and predicted noise serves as the training loss, denoted as diffusion loss LDM :=

Eε∼N (0,1),t ||ϵθ(xt, t)− ε||22 .
Few-shot fine-tuning in DMs [8, 12, 19, 23] aims at personalizing DMs with a limited set of images,
facilitating the creation of tailored content. Gal et. al. [8] introduced a technique that leverages new
tokens within the embedding space of a frozen text-to-image model to capture the concepts presented
in provided images, though this method has shown limitations in reproducing precise details of the
input images [23]. Ruiz et. al. proposed DreamBooth [23], which fine-tunes most parameters in
DMs leveraging a reconstruction loss that captures details, and a class-specific preservation loss
that ensures the alignment with the textual prompts. Additionally, Hu et. al. proposed LoRA,
a lightweight fine-tuning approach that inserts low-rank layers to be learned while keeping other
parameters frozen [12]. Qiu et. al. presented OFT, a method that employs orthogonal transformations
to enhance the quality of generation [19]. Although these methods generally succeed in capturing the
details of training images, they suffer from the corruption stage observed in this paper.

2.2 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) are a type of stochastic neural networks characterized by treating
the parameters as random variables rather than fixed values [3, 4, 18]. The objective is to infer
the posterior distribution P (θ|D) for the parameters θ given a dataset D. This approach endows
BNNs with several distinct advantages, such as the capability to model the distributions for output,
to mitigate overfitting, and to enhance model interpretability [1, 13]. One prevalent variant of
BNNs is the mean-field variational BNN, also known as Bayes by Backprop, where the mean-field
variational inference is applied to obtain the variational distribution QW (θ) to approximate the
posterior distribution P (θ|D) [3]. Recent studies have demonstrated that even a BNN module, which
treats only a subset of parameters as random variables while maintaining the rest as fixed, can retain
the benefits associated with full BNNs [9, 16, 24]. Our proposed method can be regarded as a natural
progression of BNN principles applied to few-shot fine-tuning in DMs.

3 Corruption Stage in Few-shot Fine-tuning

3.1 Observation

Training Iterations

Corruption
Stage

(a) Fine-tuning on 1 image.

Training Iterations

Corruption
Stage

(b) Fine-tuning on 2 images.

Training Iterations

Corruption
Stage

(c) Fine-tuning on 6 images.

Figure 2: Illustration of image fidelity variation in few-shot fine-tuning under different numbers of
training images measured by Dino similarity. Higher Dino similarity indicates better image fidelity.
As the number of training images increases, the corruption occurs later, and its severity is reduced.

In this section, we explore the performance variation during the few-shot fine-tuning process of DMs.
Concretely, we fine-tune Stable Diffusion (SD) v1.51 [21] with DreamBooth [23] on different number

1https://huggingface.co/runwayml/stable-diffusion-v1-5

3

of training images, and record the average Dino similarity between the generated images and training
images as a measure of the image fidelity [19, 23].

As shown in Fig. 2, the variation of the image fidelity is not monotonous during fine-tuning.
Concretely, the few-shot fine-tuning process can be approximately divided into the following phases:

1. In the first a few iterations, the image fidelity improves quickly.
2. Later, there is an abnormal decrease in the image fidelity. We observe the generated images in

this phase present with increasing noisy patterns, i.e., the gradual emergence of the corruption
stage.

3. Subsequently, the generation fidelity recovers, and we observe the corruption patterns on generated
images progressively diminish, i.e. the gradual disappearance of the corruption stage. Once
corruption completely diminishes in this phase, the model enters a state close to overfitting, where
it can only generate images identical to the training images. As a result, it loses the ability to
produce diverse images.

Fig. 2 also shows when the number of training images increases, the onset of corruption is delayed
and its severity is lessened.

3.2 Theoretical Modeling on Few-shot Fine-tuning in DMs

In this section, we begin by modeling one-shot fine-tuning scenarios and then extend it to more
general cases. This modeling is supported by an evidence on a specific case.

Modeling for One-shot Fine-tuning on DMs. We start with a representative condition where the
dataset D contains only one training image x′. Under this condition, we suppose the fine-tuned DMs
with parameter θ model the joint distribution of any original image x0 and any noisy image at time t,
i.e., xt, as a multivariate Gaussian distribution Pθ(x0, xt). Concretely, its marginal distribution of x0

is assumed as Pθ(x0) = N (x′, σ2
1) when the model is fine-tuned with only one image x′. Additionally,

as the noisy image xt is obtained by a linear combination xt =
√
αtx0+

√
1− αtϵ between x0 and a

unit Gaussian noise ϵ, the marginal distribution of xt should be Pθ(xt) = N (
√
αtx

′, αtσ
2
1+(1−αt)).

Notably, the fine-tuning process in fact narrows the KL divergence between Pθ(xt | x0 = x′) and
N (

√
αtx

′, (1−αt)), thus these distributions should be increasingly close during fine-tuning [19, 23].

With this modeling, the main focus of the DMs, predicting the original image x0 based on a noisy
image xt, is represented as Pθ(x0|xt). We find that it in fact approximates a Gaussian distribution
related to both xt and the training image x′:

Pθ(x0|xt) ≈ N (x′ + δt(xt, x
′),

(1− αt)

αtσ2
1 + (1− αt)

),

where δt(xt, x
′) =

√
αtσ

2
1

αtσ2
1 + (1− αt)

(xt −
√
αtx

′).

(1)

The most possible x0, denoted as x̂0 in the view of the DMs is:

x̂0 = argmax
x0

Pθ(x0|xt) ≈ x′ + δt(xt, x
′). (2)

The derivation details are provided at the Appendix Sec. A. Notably, the error term δt(xt, x
′)

represents the difference between the predicted original image x̂0 and the training image x′.

To illustrate an extreme case in this modeling, we consider a scenario where σ1 = 0, i.e., δt = 0.
Under this condition, for any input xt, the DMs consistently reproduce the training image x′ as
described by Eq. (2). This indicates that the DMs fully lose its intrinsic denoising ability in this
extreme scenario, only regenerating the training image instead.

In the opposite extreme, where σ1 = +∞, i.e., δt = 1√
αt
xt − x′, the model’s prediction for x0 is

exactly 1√
αt
xt. This indicates that the DMs entirely lose its ability to generate images. Instead, it

only rescales xt based on the factor αt at the time step t, leading to any noise in xt is also remaining
in the generated image.

Extension to More General Cases. We further extend our modeling to the case where D contains
multiple training samples. In specific, we assume the learned distribution of the original image x0 of

4

the DMs, i.e., Pθ(x0), is centered with an image set Iθ. Under few-shot fine-tuning, as the training
continues, Iθ gradually approximates the training dataset D. On the other hand, for the pretrained
DMs, we assume they learns a sufficiently good distribution, i.e. with a sufficiently large Iθ. For all
these DMs facing with noisy image xt, we simplify their behavior as firstly finding a sample x∗ ∈ Iθ
to minimize the error term δt(xt, x

∗), and then estimating the corresponding x̂0 according to Eq. (2).

Predicted original image
 for pretrained model ̂x0

Predicted original image
 for model fine-tuned on

1 image
̂x0

Predicted original image
 for model fine-tuned

on 6 images
̂x0

Figure 3: Denoised images from pretrained
and fine-tuned DMs using xt = 0 and t =
1000. The pretrained DMs do not largely
change xt as it is free of noise. In contrast,
both DMs fine-tuned on 1 and 5 images
transform xt to make it closely resembles
one sample within the training dataset D.

Notably, the pretrained DMs have an Iθ large enough,
hence is capable of finding a x∗ s.t the error term
δt(xt, x

∗) approximates 0, so the corruption generally
does not happen in pretrained DMs.

Support for the Modeling. To support the above
modeling closely approximates the practical scenarios,
we present a specific example where we set the “noisy”
image xt = 0, and then make both the pretrained and
fine-tuned DMs denoise this image xt which is entirely
free of noise. According to our modeling, both DMs
should first find one sample x∗ within their own Iθ.
Naturally, xt = 0 is within Iθ of the pretrained DMs
(See Appendix Sec. D for more evidence.). Therefore,
the pretrained DMs should leave this xt = 0 almost
unchanged during denoising.

0 1000 2000 3000 4000 5000 6000

Training Iterations

10

20

30
Estimated 1

Figure 4: Estimated σ1

under different training it-
erations for DreamBooth.

In comparison, the Iθ of the fine-tuned DMs should gradually approxi-
mate the training dataset D. Therefore, the fine-tuned DMs should first
find one sample x∗ ∈ D, and then predict the original image x0 as
proportional to x∗ according to Eq. (2).

Experimental results provided in Fig. 3 support our analysis, where we
can observe the pretrained DMs do not largely change this xt = 0, but
the fine-tuned DMs transform this xt to one of the samples in its training
dataset D, which indicates its Iθ ≈ D.

3.3 Explanation of the Corruption Stage.

In this section, we explain the corruption stage according to our modeling
about few-shot fine-tuning process on DMs. We first present the reason for the emergence of the
corruption stage, with an example showing the severity of such problem. We further demonstrate
why the corruption stage gradually disappears, resulting in “overfitting” as the fine-tuning process
continues.

Predicted original image
 for pretrained model̂x0

 Training image x′ Input image xt

 Additional noise δ′ Remained noise δt

Predicted original image
 for fine-tuned model̂x0

Figure 5: Experimental results for pretrained and fine-tuned
DMs with an additional noise δ′ introduced in a small region
of the noisy image xt at t = 100. The pretrained DMs effec-
tively remove δ′, producing high-quality images. Conversely,
the fine-tuned DMs fail to eliminate δ′, with output images
showing corruption patterns.

Emergence of the Corruption Stage.
As stated in Eq. (2), given any
noisy image xt, the fine-tuned DMs
would predict the original image x̂0 =
x∗ + δt, where x∗ ∈ Iθ ≈ D af-
ter certain training iterations. The
scale of the error term δt is related
to

∥∥xt −
√
αtx

∗
∥∥
2

and σ1. We esti-
mate σ1 based on xt sampled from
N (0, 1− αt) and present the average
σ1,t among different ts in Fig. 4. It
shows that the σ1 remains relatively
high under moderate iterations, result-
ing in a significant δt once xt is not
identical to

√
αtx

∗.

Concretely, for the case with only one training image, i.e., D = {x′}, we set the noisy image
xt =

√
αtx

′ +
√
1− αtε + δ′, where ε ∈ N (0, 1) and δ′ is an additional noise introduced to a small

region of the image. This δ′ simulates the case where the generating process of DMs is inaccurate
in some ts. We further set the time variable t = 100, and fine-tune DMs with 1000 iterations, with
the estimated σ1 ≈ 4.8 as shown in Fig. 4. According to Eq. (2) and the analysis above, we can

5

compute ∥δ100∥22 ≈ 2.65 ∥δ′∥22. It means the additional noise δ′ introduced is even expanded in this
case, leading to a significant error term δt. Fig. 5 shows the experimental results under this setting,
where we observe an obvious error term δt, resembling a corruption pattern.

Vanishing of the Corruption Stage. However, with the fine-tuning continues, σ1 drops as shown in
Fig. 4, leading to a decreasing prediction error δt. This indicates that the corruption stage vanishes,
and the fine-tuned DMs gradually move to the state where they only strictly regenerate the training
image x′ ∈ D.

In conclusion, the analysis in this Sec. 3.3 shows how the corruption stage happens when the learned
distribution of DMs is highly limited with small Iθ and a high standard deviation σ1.

4 Applying BNNs to Few-shot Fine-tuning on DMs

4.1 Motivation

Based on our analysis, the corruption stage primarily arises from a limited learned distribution with
a small Iθ. Motivated by recent work on BNNs [3, 9, 16, 24], which model the parameters θ as
random variables, we propose to apply BNNs in the few-shot fine-tuning process on DMs as a
simple yet effective method to expand Iθ. Intuitively, the modeling of BNNs hinders the DMs to
learn the exact distribution of the training dataset D. Therefore, the DMs are encouraged to learn a
larger and more robust distribution to counter the randomness. Moreover, the sampling randomness
during the fine-tuning process can be regarded as an inherent data augmentation, which indicates the
corresponding Iθ is implicitly expanded.

4.2 Formulation

Modeling. BNNs model the parameters θ as random variables. Therefore, the learned distribution
of DMs with BNN is P (x|D) =

∫
P (x|θ)P (θ|D)dθ. Concretely, P (x|θ) is the image distribution

modeled by the DMs, and P (θ|D) is the posterior parameter distribution with a given dataset D.

As the posterior distribution P (θ|D) is intractable, a variational distribution QW (θ) is applied to
approximate it. We model the variational distribution of each parameter θ as a Gaussian distribution:
θ ∼ N (µθ, σ

2
θ), where W = {µθ, σθ} are trainable parameters. Considering the fine-tuning process,

we initialize the expectation term µθ from the corresponding parameter of the pretrained DMs,
denoted as θ0. Following previous work [3], we apply the re-parameterization trick to obtain the
gradients of the parameters, as detailed in Appendix Sec. B.

Training. During the fine-tuning process, the DMs are trained by minimizing the Kullback–Leibler
(KL) divergence KL(QW (θ)||P (θ|D)), which is equivalent to minimizing

L = −
∫

QW (θ) log
P (θ,D)

QW (θ)
dθ = Eθ∼QW (θ) − logP (D|θ)︸ ︷︷ ︸

LDM

+KL(P (θ)||QW (θ))︸ ︷︷ ︸
Lr

. (3)

Following previous work [33], the above loss L can be divided into two terms. In DMs, the first term
can be seen as the modeled probability for the training dataset D, and is equivalent to the expectation
of the diffusion loss LDM shown in Sec. 2.1 on the parameters θ. The second term can be seen
as a regularization restricting the discrepancy between the variational distribution QW (θ) and the
prior distribution P (θ). We name it as the regularization loss Lr. In few-shot fine-tuning, we regard
the pretrained DMs naturally represent the prior information, so we set the prior distribution P (θ)
from the pretrained DMs, i.e., P (θ) = N (θ0, σ

2), where σ is a hyperparameter which represents the
parameter randomness.

In practice, we formulate our learning target as a linear combination of LDM and Lr with a hyperpa-
rameter λ, i.e.,

W ∗ = argmin
W

Eθ∼QW (θ)LDM + λLr. (4)

The training process is summarized in Appendix Alg. 1. Empirically, we find that using only
Eθ∼QW (θ)LDM , i.e., setting λ as 0, is enough to improve few-shot fine-tuning. Nevertheless, we can
reach a further trade-off between the generation diversity and image fidelity by adjusting λ.

6

Object-Driven Generation: DreamBooth Dataset Subject-Driven Generation: CelebA Dataset
Method Clip-T↑ Dino↑ Clip-I↑ Lpips↑ Clip-IQA↑ Method Clip-T↑ Dino↑ Clip-I↑ Lpips↑ Clip-IQA↑

DreamBooth 0.246 0.614 0.771 0.611 0.875 DreamBooth 0.186 0.642 0.723 0.511 0.789
DreamBooth w/ BNNs 0.256 0.633 0.785 0.640 0.893 DreamBooth w/ BNNs 0.205 0.696 0.757 0.515 0.811

LoRA 0.252 0.542 0.722 0.650 0.864 LoRA 0.216 0.602 0.656 0.644 0.804
LoRA w/ BNNs 0.261 0.618 0.769 0.678 0.890 LoRA w/ BNNs 0.227 0.604 0.663 0.688 0.824

OFT 0.233 0.649 0.786 0.629 0.861 OFT 0.164 0.675 0.728 0.549 0.784
OFT w/ BNNs 0.242 0.661 0.791 0.646 0.884 OFT w/ BNNs 0.185 0.696 0.743 0.570 0.798

Table 1: Performance of fine-tuning with BNNs under object-driven and subject-driven generation.

Inference. During the inference, we explicitly replace each parameter θ with its mean value µθ and
perform inference just as DMs without BNNs. It guarantees that we do not introduce any additional
costs compared to fine-tuned DMs without BNNs when deployed in production.

Motivated by previous work on BNN modules [9, 16, 24], we only model a subset of parameters as
random variables in practice, which reduces the computational costs. Fine-tuning DMs with BNNs is
compatible with existing few-shot fine-tuning methods, including DreamBooth [23], LoRA [12], and
OFT [19]. More details are presented in Appendix Sec. C.

5 Experiments

We apply BNNs to different few-shot fine-tuning methods across different tasks. For object-driven
generation, where the fine-tuned DMs synthesize images with the details of given objects, we use
all the 30 classes from DreamBooth [23] dataset, each containing 4-6 images. For subject-driven
generation, where the fine-tuned DMs synthesize images with the identities of given people, we
follow previous research [28], randomly selecting 30 classes of images from CelebA-HQ [17], each
containing 5 images. Most training settings follow previous work [12, 19, 23, 28]. All experiments
are conducted with 5 different seeds by default and we report the average performance here. We use
Stable Diffusion v1.52 (SD v1.5) as the default model for fine-tuning. As for the BNNs, we set the
default initialized standard derivation σθ and prior standard derivation σ as 0.01. The λ is set as 0 by
default. We show more details in Appendix Sec. F.1.

Following previous work [12, 19, 23], for each class, we fine-tune a DM and generate 100 images
with various prompts. These generated images are used to measure the performance of different
few-shot fine-tuning methods. In specific, we use Clip-T [20] to measure the text prompt fidelity,
Clip-I [10] and Dino [5] to assess image fidelity, and Lpips [34] to evaluate generation diversity.
Additionally, we apply Clip-IQA [29] to measure no-reference image quality. We show more details
about these metrics in Appendix Sec. E.

5.1 Comparisons

We apply BNNs on different few-shot fine-tuning methods under both object-driven and subject-
driven generation tasks. As shown in Tab. 1 and Fig. 6, BNNs bring considerable improvements
on all few-shot fine-tuning methods across text prompt fidelity (Clip-T) and image fidelity (Dino
and Clip-I). These improvements arise from the expanded learned distribution contributed by BNNs,
which makes the DMs more capable to generate reasonable images about the learned objects/subjects
based on different prompts. BNNs also largely enhance the no-reference image quality (Clip-IQA). It
is mainly because BNNs largely reduce the corruption phenomenon, which also partially improve the
image fidelity (Dino and Clip-I) as the corrupted images are semantically distant to training images.
Additionally, we observe BNNs boost the generation diversity (Lpips). We believe it naturally comes
from the randomness introduced by BNNs.

To further confirm the improvements brought by BNNs, we conduct a series of user studies, detailed
in Appendix Sec. H. The results suggest a notable preference of few-shot fine-tuning methods with
BNNs over the ones without BNNs.

5.2 Generalization

In this section, we further demonstrate BNNs can be applied to broader scenarios with notable
performance improvement, including different DMs, varying training steps and a different number of
training images. By default, we experiment on DreamBooth with BNNs for fine-tuning.

2https://huggingface.co/runwayml/stable-diffusion-v1-5

7

Input images

Input images

DreamBooth LoRA OFT

 w/o
BNNs

 w/
BNNs

LoRA OFTDreamBooth

Prompt: A [V] vase with a tree and autumn leaves in the background

Prompt: A photo of a [V] person smiling

Best-case generation Average-case generation

Best-case generation Average-case generation

 w/o
BNNs

 w/
BNNs

DreamBooth LoRA OFT DreamBooth LoRA OFT

Figure 6: Comparison of few-shot fine-tuning methods with and without BNNs across subject-driven
and object-driven scenarios. We show both best-case and average-case generated images measured
by Clip-I, Dino and Clip-IQA. See Appendix Sec. G and K for more details.

Clip-T↑ Dino↑ Clip-I↑ Lpips↑ Clip-IQA↑
w/o BNNs 0.246 0.614 0.771 0.611 0.875SD v1.5 w/ BNNs 0.256 0.633 0.785 0.640 0.893
w/o BNNs 0.248 0.594 0.762 0.618 0.872SD v1.4 w/ BNNs 0.249 0.620 0.777 0.656 0.895
w/o BNNs 0.240 0.563 0.739 0.604 0.875SD v2.0 w/ BNNs 0.248 0.610 0.764 0.649 0.925

Table 2: Performance under different DMs. All DMs are
fine-tuned with DreamBooth on DreamBooth dataset.

Different DMs. Following previous
work [32], we experiment on differ-
ent DMs. Concretely, besides default
SD v1.5, we also experiment on SD
v1.4 and SD v2.0 [21]. We provide
training details in Appendix Sec. F.2.
Tab. 2 indicates that applying BNNs
on different DMs of SD consistently
improves few-shot fine-tuning across
multiple metrics.

50 100 200 400 800
0.45

0.50

0.55

0.60

0.65

w/ BNNs
w/o BNNs

(a) Dino

50 100 200 400 800

0.70

0.75

0.80

0.85

0.90

w/ BNNs
w/o BNNs

(b) Clip-IQA

Figure 7: Comparison of performance with and
without BNNs on the DreamBooth dataset with
different training iterations per image.

Training Iterations. Fig. 7 shows that our
method consistently improves the image quality
(Clip-IQA). It also improves the image fidelity
(Dino) when the training steps are larger than
100 × Num, where Num represents the num-
ber of images utilized during fine-tuning. With
fewer iterations, the model suffers from underfit-
ting. In this case, BNNs may make the underfit-
ting problem further severe as BNNs encourage
the model to learn a larger distribution. This
results in the slightly decreased image fidelity
(Dino) observed in 100×Num.

Numbers of Training Images. We also experiment under different numbers of training images.
Concretely, we use the CelebA-HQ [17] dataset as it contains enough images per class. We randomly
select five classes from the CelebA-HQ dataset and conduct experiments with different numbers of
training images. We fix the training iterations to 250×Num.

Fig. 8 illustrates that our method consistently improves image fidelity and quality under different
numbers of training images. Such improvement is more obvious with more training images.

8

Layer Type CrossAttn Up Block Only Clip-T↑ Dino↑ Clip-I↑ Lpips↑ Clip-IQA↑ Memory Costs(MB) Time Costs(s)

N.A. 0.246 0.614 0.771 0.611 0.875 27236 933
Linear 0.256 0.633 0.785 0.640 0.893 31912 1107
Linear ! 0.259 0.614 0.776 0.646 0.890 29674 1040
Linear ! 0.272 0.611 0.760 0.672 0.897 33258 1157

LN+GN 0.254 0.650 0.792 0.643 0.889 27268 1088

Table 3: Comparison of performance when BNNs are applied to different layers in DMs. All
experiments are conducted on DreamBooth dataset fine-tuning with DreamBooth. ‘N.A.’ refers to no
BNN applied. ‘CrossAttn’ refers to BNN applied to cross-attention modules. We report the GPU
memory costs and average time costs during fine-tuning for each class on one A100 GPU.

4 8 12 16
0.4

0.5

0.6

0.7

w/ BNNs
w/o BNNs

(a) Dino

4 8 12 16
0.60

0.65

0.70

0.75

w/ BNNs
w/o BNNs

(b) Clip-IQA

Figure 8: Comparison of performance with differ-
ent number of training images.

This is primarily because the 250×Num gener-
ally results in more severe corruption problems
when the training image number Num is larger,
in which case BNNs bring in much improve-
ment by expanding the learning distribution and
relieving corruptions.

5.3 Ablation Study

0 0.0025 0.005 0.01 0.02 0.04

0.4

0.6

0.8

Clip-IQA
Dino

(a) Different Initialized σθ

0 0.5 1 2 4 8 16

0.4

0.5

0.6

0.7

Lpips
Dino

(b) Different λ

Figure 9: Ablation study on different initialized σθ

and different λ.

Scale of Initialized σθ. The initialized standard
deviation σθ determines the extent of random-
ness during fine-tuning. We experiment with
applying BNNs under varying initialized σθ. Ex-
perimental results in Fig. 9a indicate that both
the image fidelity (Dino) and quality (Clip-IQA)
improves with a moderate initialized σθ. How-
ever, when the initialized σθ is too large, the
DMs collapse and the performance rapidly de-
creases. This indicates the DMs are almost ran-
domly updated because of the too large random-
ness introduced in this scenario.

Trade-off Between Diversity and Fidelity with Adjusted λ. Eq. (4) indicates λ controls the
trade-off between the generation diversity and image fidelity. As illustrated in Fig. 9b, an increasing
λ leads to improving generation diversity (Lpips), albeit at the expense of image fidelity (Dino).

Where to Apply BNNs. As mentioned in Sec. 4.2, we could model only a subset of parameters as
random variables, i.e., applying BNNs on a part of layers in DMs. By default, we apply BNNs to
all linear layers in the U-Net [22] except the ones in the cross-attention modules and explore how
different choices influence the performance and the training costs.

As shown in Tab. 2, the DM can achieve relatively good performance with only the upblock of the
U-Net applied with BNNs, which reduces the ratio of the parameters modified to about 13.8%. We
can further decrease the training costs by only applying BNNs on the normalization layer, i.e., Layer
Normalization (LN) [2] and Group Normalization (GN) [30] layers. This decreases the ratio of the
parameters modified to about 0.02% with relatively strong performance.

Additionally, when BNNs are applied to cross-attention modules, there is a significant increase in
text prompt fidelity (Clip-T) at the expenses of image fidelity (Dino and Clip-I). Intuitively, this is
because the input image aligns with only a limited set of prompts, and the applying of BNNs in
cross-attention modules produces a further broader distribution matching more prompts.

6 Conclusion

In this paper, we focus on few-shot fine-tuning in DMs, and reveal an unusual “corruption stage”
where image fidelity first improves, then deteriorates due to noisy patterns, before recovering. With
theoretical modeling, we attribute this phenomenon to the constrained learned distribution inherent
in few-shot fine-tuning. By applying BNNs to broaden the learned distribution, we mitigate the
corruption. Experiment results across various fine-tuning methods and datasets underscore the
versatility of our approach.

9

A Drivation of Eq. (2)

We first restate our assumptions formally:

• The joint distribution of x0 and xt is modeled by the DM as a multivariate Gaussian distribution

Pθ([x0, xt]
T) = N (µ,Σ) = N ([x′,

√
αtx

′]T ,

[
σ2
1 c
c αtσ

2
1 + (1− αt)

]
), (5)

where c represents the unknown covariance between x0 and xt.

• The conditional probability of xt given x0 = x′ is

Pθ(xt | x0 = x′) = N (
√
αtx

′, (1− αt)). (6)

Denote the inverse matrix of Σ as

Σ−1 =

[
λ11 λ12

λ21 λ22

]
=

1

|Σ|

[
αtσ

2
1 + 1− αt −c
−c σ2

1

]
, (7)

where |Σ| = σ2
1(αtσ

2
1 + (1− αt))− c2 is the determinant of Σ. According to the property of joint

Gaussian distribution, the conditional distribution P (xt|x0) can be represented as

P (xt|x0) = N (
λ22

√
αtx′ + λ12x0 − λ12x

′

λ22
,

1

λ22
). (8)

According to Eq. (6),

1

λ22
= (1− αt), (9)

which means c = ±√
αtσ

2
1 . Hence we know the joint distribution is

Pθ([x0, xt]
T) = N (µ,Σ) = N ([x′,

√
αtx

′]T ,

[
σ2
1 ±√

αtσ
2
1

±√
αtσ

2
1 αtσ

2
1 + (1− αt)

]
). (10)

Repeatedly, according to the property of joint Gaussian distribution, we have

P (x0|xt) = N (x′ ±
√
αtσ

2
1(y −

√
αtx

′)

αtσ2
1 + (1− αt)

,
1− αt

αtσ2
1 + 1− αt

). (11)

In practice, the positive sign is more reasonable as it indicates the deviations of the predicted image
x0 and the input noisy image xt are aligned. Therefore,

P (x0|xt) = N (x′ +

√
αtσ

2
1(y −

√
αtx

′)

αtσ2
1 + (1− αt)

,
1− αt

αtσ2
1 + 1− αt

). (12)

B Details of Applying BNNs

The training process of applying BNNs in fine-tuning is summarized in Alg. 1. To obtain the
gradients of the variational parameters, i.e., gradients of W = {µθ, σθ}, we apply the commonly
used reparameterization trick in BNNs. Concretely, we first sample a unit Gaussian variable εθ for
each θ, and then perform θ = µθ + σθ × εθ to obtain a posterior sample of θ. Hence, the gradients
can be calculated by

∂

∂W
L =

∂

∂W

[
EQW (θ)LDM + Lr

]
(13)

= Eεθ∼N (0,I)

[
∂LDM

∂θ

∂θ

∂W
+

∂Lr

∂W

]
. (14)

We refer to the Proposition 1 in previous work [3] for the detailed derivation.

10

Algorithm 1: Fine-tuning DMs with BNNs

Input: Initialized variational parameters W = {µθ, σθ}, prior distributions P (θ) = N (θ0, σ
2),

fine-tuning dataset D, number of fine-tuning iterations N , hyperparameter λ
Output: Fine-tuned variational parameters W = {µθ, σθ}
for i = 0 to N − 1 do

Sample εθ ∼ N (0, I).
Compute θ = µθ + εθ ◦ σθ.
Sample x ∈ D, t ∼ U(1, 1000), noise εt ∼ N (0, 1)
Compute LDM = ∥εt − ϵθ(xt, t)∥2.
Compute Lr = KL(P (θ)∥N (µθ, σ

2
θ)).

Compute L = LDM + λLr

Backward L and update µθ, σθ.
end for

C Applying BNNs on Different Few-shot Fine-tuning Methods

Applying BNNs on DreamBooth. DreamBooth is a full-parameter fine-tuning method, and is
one of the mainstream fine-tuning methods [23]. Therefore, all parameters in DreamBooth can be
modeled as the BNNs parameters.

Applying BNNs on LoRA. LoRA [12] is a classic lightweight yet effective method for few-shot
fine-tuning. In LoRA layers, the weight matrix W ∈ Rd×k is modeled as a sum of fixed weight
from the pretrained model and a trainable low-rank decomposition: W = W0 + BA, where
W0 ∈ Rd×k,B ∈ Rd×r,A ∈ Rr×k with rank r [12]. In our implementation, we only convert the up
matrix A into random variables, and the down matrix B is still kept as usual trainable parameters to
make P (W) a Gaussian distribution. This design also reduces additional computational costs during
training while keeps its effectiveness.

Applying BNNs on OFT. OFT is a few-shot fine-tuning method where the weights are tuned only
by orthogonal transformations [19]. In OFT layers, the weight matrix W ∈ Rd×k is modeled as
W = RW0, where R is guaranteed to be an orthogonal matrix by R = (I + 0.5(Q−QT))(I −
0.5(Q−QT))−1, and Q is the trainable parameter in the original OFT method. To guarantee the
orthogonality is not destroyed by random sampling in BNNs, we only convert the trainable parameter
Q into random variables. Therefore, after the above transformation, R is kept as an orthogonal
matrix, and W is kept as an orthogonalization transformation of the original pretrained W0.

D Details of the Validation Experiments

Proof for xt = 0 is within the Iθ of the pretrained DMs. We provide two proofs that xt = 0 is
within the Iθ of the pretrained DMs. The SD v1.5 is used as the pretrained DM.

• As shown in Fig. 10a, we use the prompt “a simple, solid gray image with no textures or variations”
to generate images, and we observe the pretrained DM is capable of generating such images free of
noise.

• We use the Img2Img Pipeline3 provided by diffusers with no prompt provided, i.e., unconditional
generation. Then we set the input image as a blank one and the img2img strength as 0.1, which
means input noisy image x100 = α100ε, where ε ∈ N (0, 1). As shown in Fig. 10b. we can also
observe the denoised result is completely free of noise.

Both results support our argument that xt = 0 is naturally within Iθ of the pretrained DMs.

Settings for Experiments in Sec. 3.3. We fine-tune a SD v1.5 with DreamBooth without PPL
loss [23]. The learning rate is fixed to 5× 10−6 and only the U-Net [22] is fine-tuned. We use the
backpack class in DreamBooth dataset as an example, and use prompt "a [V] backpack" to train
where the “[V]" is the special token. We set x100 = 0 and show the one-step denoised result using

3https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_
diffusion_img2img.py

11

Prompts for object-driven generation Prompts for subject-driven generation

a [V] [object] in the jungle a photo of a [V] person wearing sunglasses
a [V] [object] in the snow a photo of a [V] person with snowflakes in their hair
a [V] [object] on the beach a photo of a [V] person with beachy hair waves
a [V] [object] on a cobblestone street a photo of a [V] person wearing a beret
a [V] [object] on top of pink fabric a photo of a [V] person with a neutral expression
a [V] [object] on top of a wooden floor a photo of a [V] person with a contemplative look
a [V] [object] with a city in the background a photo of a [V] person laughing heartily
a [V] [object] with a mountain in the background a photo of a [V] person with an amused smile
a [V] [object] with a blue house in the background a photo of a [V] person with forest green eyeshadow
a [V] [object] on top of a purple rug in a forest a photo of a [V] person wearing a red hat
a [V] [object] wearing a red hat a photo of a [V] person with a slight grin
a [V] [object] wearing a santa hat a photo of a [V] person with a thoughtful gaze
a [V] [object] wearing a rainbow scarf a photo of a [V] person wearing a black top hat
a [V] [object] wearing a black top hat and a monocle a photo of a [V] person in a chef hat
a [V] [object] in a chef outfit a photo of a [V] person in a firefighter helmet
a [V] [object] in a firefighter outfit a photo of a [V] person in a police cap
a [V] [object] in a police outfit a photo of a [V] person wearing pink glasses
a [V] [object] wearing pink glasses a photo of a [V] person wearing a yellow headband
a [V] [object] wearing a yellow shirt a photo of a [V] person in a purple wizard hat
a [V] [object] in a purple wizard outfit a photo of a [V] person smiling
a red [V] [object] a photo of a [V] person frowning
a purple [V] [object] a photo of a [V] person looking surprised
a shiny [V] [object] a photo of a [V] person winking
a wet [V] [object] a photo of a [V] person yawning
a cube shaped [V] [object] a photo of a [V] person laughing

Table 4: Prompts used for evaluation. [V] indicates the special token and [object] indicates the type
of the object.

(a) Generated Images based on given prompt

Input Image Generated Image

(b) Img2img result for pure-color image as input.

Figure 10: Proof for xt = 0 is within the Iθ of the pretrained DM.

the Img2Img Pipeline provided by diffusers. During denoising, for both pretrained and fine-tuned
DMs, the prompt is fixed to “a [V] backpack". More results are shown in Fig. 11.

E Metrics

We use following metrics to robustly measure different aspects of the fine-tuned DMs:

Text prompt fidelity: Following previous papers [19, 23] , we use the average similarity between the
clip [20] embeddings of the text prompt and generated images, denoted as Clip-T.

Image fidelity: Following previous papers [19, 23], we compute the average similarity between the
clip [20] and dino [5] embeddings of the generated images and training images, denoted as Clip-I [10]
and Dino.

Generation Diversity: We compute the average Lpips [34] distance between the generated images
of the fine-tuned DMs, following previous papers [19, 23].

Image quality: We find that corruption largely decreases the visual quality of the images, making
them unusable. However, full-reference images quality measurement cannot fully represent this

12

Inference Step=1 Inference Step=2 Inference Step=5 Inference Step=50

Pretrain DM

DM Finetuned on
1 image (1000 iters)

DM Finetuned on
1 image (5000 iters)

DM Finetuned on
5 images (75000 iters)

Figure 11: More results for generated images when input xt = 0 under different DMs and different
inference steps.

Object-Driven Generation: DreamBooth Dataset Subject-Driven Generation: CelebA Dataset
Method Clip-T Dino Clip-I Lpips Clip-IQA Method Clip-T Dino Clip-I Lpips Clip-IQA

DreamBooth 0.0017 0.0057 0.0037 0.0051 0.0028 DreamBooth 0.0065 0.0179 0.0115 0.0087 0.0078
DreamBooth w/ BNNs 0.0016 0.0056 0.0035 0.0054 0.0023 DreamBooth w/ BNNs 0.0036 0.0102 0.0090 0.0191 0.0095

LoRA 0.0018 0.0087 0.0045 0.0048 0.0084 LoRA 0.0034 0.0085 0.0059 0.0060 0.0068
LoRA w/ BNNs 0.0032 0.0104 0.0064 0.0072 0.0021 LoRA w/ BNNs 0.0025 0.0049 0.0163 0.0078 0.0065

OFT 0.0030 0.0063 0.0041 0.0081 0.0045 OFT 0.0026 0.0194 0.0141 0.0130 0.0115
OFT w/ BNNs 0.0010 0.0028 0.0026 0.0062 0.0068 OFT w/ BNNs 0.0024 0.0078 0.0066 0.0061 0.0094

Table 5: Standard deviation of the results shown in Tab. 1.

kind of degradation in image quality. Therefore, we propose to add no-visual quality metric for
measurements. We use Clip-IQA [29] for measurements, which is one of the SOTA no-reference
image quality measurements.

F Settings of Fine-tuning

We experiment on applying BNNs on different fine-tuning methods with one A100 GPU. All
experiments are conducted under all 30 classes with 5 different seeds by default and we report the
average performance. The standard deviation of our main result in Tab. 1 is shown in Tab. 5.

F.1 Few-shot Fine-tuning Hyper-parameters

The details of the parameters in the few-shot fine-tuning methods on our default model, i.e., SD v1.5,
are presented below. We use Num to represent the number of images utilized for training.

13

Dreambooth: We use the training script provided by Diffusers4. Only the U-Net is fine-tuned during
the training process. By default, the number of training steps is set to 200×Num on DreamBooth
dataset and 250×Num on CelebA, with a learning rate of 5× 10−6. The batch size is set to 1, and
the number of class images used for computing the prior loss is 200×Num by default. The prior loss
weight remains fixed at 1.0. For the DreamBooth dataset, the training instance prompt is “a photo of
a [V] {class prompt}”, where{class prompt} refers to the type of the image (such as dog, cat and so
on). For the CelebA dataset, the training instance prompt is “a photo of a [V] person”.

LoRA: We use the training script provided by Diffusers5. All default parameters remain consistent
with the case in Dreambooth (No Prior), with the exception of the learning rate and training steps,
which are adjusted to 1× 10−4 and to 400×Num, respectively.

OFT: We use the training script provided by the authors6. All default parameters remain consistent
with the case in Dreambooth (No Prior), with the exception of the learning rate, which is adjusted to
1× 10−4.

For all experiments involving the applying of BNNs, we maintain the default settings for the number
of learning steps, learning rate, training prompts, and other hyper-parameters.

For evaluation purposes, each training checkpoint generates four images per prompt, resulting in a
total of 100 images from 25 different prompts. The prompts used for evaluation are displayed in
Tab. 4, encompassing a broad set to thoroughly assess the variety and quality of the DMs.

F.2 Training Setting for DMs with Different Architectures

In this section, we provide training settings for applying BNNs on different DMs under DreamBooth.
The learning rate is fixed to 5 × 10−6 in all cases. The numbers of training iterations are set as
200×Num and 400×Num for SD v1.4 and SD v2.0, respectively.

For BNNs applying on SD v1.4, we set the hyperparameter λ = 0.1. All other hyperparameters are
set as default.

G Best-case v.s. Average-case Generation

After few-shot fine-tuning, we observe that every DM exhibits failure in generation sometimes
either due to mismatching the prompt or generating images largely different with the learned object.
Therefore, it is not beneficial to make comparisons based on the worst-case generation. However,
average-case generation can be representative, in addition to the best-case scenario. Specifically, we
first filter the generated images by selecting the top 90% using CLIP-T and Dino to ensure alignment
with the prompt and the learned concept. Subsequently, we employ CLIP-IQA to identify both the
top-quality and average-quality images. This approach provides a more comprehensive evaluation of
the models’ performance.

H User Study

User Study Setting.

We conduct user study to comprehensively present the superiority of applying BNNs on few-shot fine-
tuning DMs. Concretely, we follow previous work [19, 23] and conduct a structured human evaluation
for generated images, involving 101 participants. For this purpose, we utilize the DreamBooth dataset
and the CelebA-HQ dataset. Subsequently, we generate four images per subject or object using a
random prompt selected from 25 prompts across five models trained with different seeds.

Each participant is requested to compare image pairs generated by models that have been fine-tuned
with and without BNNs, using three baseline models: DreamBooth, LoRA, and OFT. For each task,
there are three binary-selection questions:

4https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth.py
5https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/train_dreambooth_lora.py
6https://github.com/Zeju1997/oft

14

Best-case Generation Average-case Generation
Method Subject Fidelity Text Alignment Overall Image Quality Method Subject Fidelity Text alignment Overall Image Quality

DreamBooth 34.4% 32.3% 30.2% DreamBooth 50.5% 35.6% 28.7%
DreamBooth w/ BNNs 65.6% 67.7% 69.8% DreamBooth w/ BNNs 49.5% 64.4% 71.3%

LoRA 48.0% 34.7% 31.6% LoRA 27.5% 26.5% 24.5%
LoRA w/ BNNs 52.0% 65.3% 68.4% LoRA w/ BNNs 72.5% 73.5% 75.5%

OFT 30.6% 34.7% 40.8% OFT 41.1% 26.8% 39.3%
OFT w/ BNNs 69.4% 65.3% 59.2% OFT w/ BNNs 58.9% 73.2% 60.7%

Table 6: User study results of fine-tuned DMs with and without BNNs across various measurements
under both best-case and average-case scenarios. The table depicts the percentage of users favoring
generated images from fine-tuned DMs with and without BNNs.
• Subject fidelity: Which of the given two images contains a subject or object that is most similar to

the following reference image (one from the training dataset)?
• Text alignment: Which of the given two images best matches the text description provided below

(the prompt used to generate the images)?
• Overall image quality: Which of the given two images exhibits the higher image quality?

To comprehensively compare the performance of fine-tuning with and without BNNs, we select both
the best and average cases from the generated images as mentioned in Sec. G.

Results. The results are presented in Tab. 6, which shows the percentage of participants favoring
each method (with and without BNNs) based on the criteria described above. It is evident that the
methods with BNNs are preferred in most scenarios for both best-case and average-case generations.
This preference is particularly significant in terms of text alignment and overall image quality.

I Limitations and Future Work

Even though few-shot fine-tuning DMs with BNNs applied has shown promising improvements,
this paper also introduces a few interesting open problems. Firstly, the extra randomness may make
fine-tuning slower. This may lower the generation quality when the DMs are under-fitting. In addition,
the ability of learning extremely detailed patterns in the image may be reduced when the number of
fine-tuning iterations is insufficient. Future work could focus on these problems.

J Broader Impact

This paper focuses on advancing few-shot fine-tuning techniques in DMs to provide more effective
tools for creating personalized images in various contexts. Previous few-shot fine-tuning methods
have faced corruption phenomenon, as mentioned in this paper. Our approach, utilizing BNNs,
addresses this phenomenon and provides generated images with higher quality.

However, there is potential for misuse, as malicious entities could exploit these technologies to
deceive or misinform. Such challenges underscore the critical need for continuous exploration in
this field. The development and ethical application of personalized generative models are not only
paramount but also ripe for future research.

K More Visualizations

We show more visualized results in Fig. 12 and Fig. 13.

15

Input images

Input images

DreamBooth LoRA OFT

 w/o
BNNs

 w/
BNNs

LoRA OFTDreamBooth

Prompt: A [V] backpack in the snow

Prompt: A photo of a [V] person in a purple wizard hat

Best-case generation Average-case generation

Best-case generation Average-case generation

 w/o
BNNs

 w/
BNNs

DreamBooth LoRA OFT DreamBooth LoRA OFT

Input images

Input images

DreamBooth LoRA OFT

 w/o
BNNs

 w/
BNNs

LoRA OFTDreamBooth

Prompt: A [V] cat in the jungle

Prompt: A photo of a [V] person wearing a black top hat

Best-case generation Average-case generation

Best-case generation Average-case generation

 w/o
BNNs

 w/
BNNs

DreamBooth LoRA OFT DreamBooth LoRA OFT

Figure 12: More visualizations on subject-driven and object-driven scenarios.

16

Input images

Input images

DreamBooth LoRA OFT

 w/o
BNNs

 w/
BNNs

LoRA OFTDreamBooth

Prompt: A [V] boot on top of a dirt road

Prompt: A photo of a [V] person with snowflakes in their hair

Best-case generation Average-case generation

Best-case generation Average-case generation

 w/o
BNNs

 w/
BNNs

DreamBooth LoRA OFT DreamBooth LoRA OFT

Figure 13: More visualizations on subject-driven and object-driven scenarios.

17

References
[1] J. Arbel, K. Pitas, M. Vladimirova, and V. Fortuin. A Primer on Bayesian Neural Networks:

Review and Debates. arXiv preprint arXiv:2309.16314, 2023.

[2] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv preprint arXiv:1607.06450,
2016.

[3] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight Uncertainty in Neural
Network. In ICML, 2015.

[4] W. L. Buntine. Bayesian Backpropagation. Complex Systems, 5:603–643, 1991.

[5] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging
Properties in Self-supervised Vision Transformers. In ICCV, 2021.

[6] Civitai. Civitai: The Home of Open-Source Generative AI, 2024. https://www.civitai.com.

[7] G. Daras, K. Shah, Y. Dagan, A. Gollakota, A. Dimakis, and A. Klivans. Ambient Diffusion:
Learning Clean Distributions from Corrupted Data. In NeurIPS, 2023.

[8] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or. An
Image Is Worth One Word: Personalizing Text-to-Image Generation Using Textual Inversion.
arXiv preprint arXiv:2208.01618, 2022.

[9] J. Harrison, J. Willes, and J. Snoek. Variational Bayesian Last Layers. In AABI, 2023.

[10] J. Hessel, A. Holtzman, M. Forbes, R. L. Bras, and Y. Choi. Clipscore: A Reference-free
Evaluation Metric for Image Captioning. arXiv preprint arXiv:2104.08718, 2021.

[11] J. Ho, A. Jain, and P. Abbeel. Denoising Diffusion Probabilistic Models. In NeurIPS, 2020.

[12] E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. LoRA: Low-Rank
Adaptation of Large Language Models. In ICLR, 2021.

[13] L. V. Jospin, H. Laga, F. Boussaid, W. Buntine, and M. Bennamoun. Hands-on Bayesian neural
networks—A tutorial for deep learning users. IEEE Computational Intelligence Magazine,
17(2):29–48, 2022.

[14] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training Generative
Adversarial Networks with Limited Data. In NeurIPS, 2020.

[15] B. Kawar, S. Zada, O. Lang, O. Tov, H. Chang, T. Dekel, I. Mosseri, and M. Irani. Imagic:
Text-Based Real Image Editing With Diffusion Models. arXiv preprint arXiv:2210.09276,
2022.

[16] A. Kristiadi, M. Hein, and P. Hennig. Being Bayesian, Even Just a Bit, Fixes Overconfidence in
ReLU Networks. In ICML, 2020.

[17] Z. Liu, P. Luo, X. Wang, and X. Tang. Large-scale celebfaces attributes (celeba) dataset.
Retrieved August, 15(2018):11, 2018.

[18] R. M. Neal. Bayesian Learning for Neural Networks, volume 118. Springer Science & Business
Media, 2012.

[19] Z. Qiu, W. Liu, H. Feng, Y. Xue, Y. Feng, Z. Liu, D. Zhang, A. Weller, and B. Schölkopf.
Controlling Text-to-Image Diffusion by Orthogonal Finetuning. In NeurIPS, 2023.

[20] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning Transferable Visual Models from Natural Language
Supervision. In ICML, 2021.

[21] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-Resolution Image
Synthesis With Latent Diffusion Models. In CVPR, 2022.

18

[22] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional Networks for Biomedical Image
Segmentation. In MICCAI, 2015.

[23] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. DreamBooth: Fine
Tuning Text-to-Image Diffusion Models for Subject-Driven Generation. In CVPR, 2023.

[24] M. Sharma, S. Farquhar, E. Nalisnick, and T. Rainforth. Do Bayesian Neural Networks Need
To Be Fully Stochastic? In AISTATS, 2023.

[25] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli. Deep Unsupervised Learning
Using Nonequilibrium Thermodynamics. In ICML, 2015.

[26] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. In
NeurIPS, 2019.

[27] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based Gen-
erative Modeling through Stochastic Differential Equations. arXiv preprint arXiv:2011.13456,
2020.

[28] T. Van Le, H. Phung, T. H. Nguyen, Q. Dao, N. Tran, and A. Tran. Anti-DreamBooth: Protecting
Users from Personalized Text-to-image Synthesis. In ICCV, 2023.

[29] J. Wang, K. C. Chan, and C. C. Loy. Exploring Clip for Assessing the Look and Feel of Images.
In AAAI, 2023.

[30] Y. Wu and K. He. Group Normalization. In ECCV, 2018.

[31] R. Yang, P. Srivastava, and S. Mandt. Diffusion Probabilistic Modeling for Video Generation.
arXiv preprint arXiv:2203.09481, 2022.

[32] X. Ye, H. Huang, J. An, and Y. Wang. DUAW: Data-free Universal Adversarial Watermark
against Stable Diffusion Customization. In ICLR 2024 Workshop on Secure and Trustworthy
Large Language Models, 2024.

[33] J. Zhang, Y. Hua, T. Song, H. Wang, Z. Xue, R. Ma, and H. Guan. Improving Bayesian Neural
Networks by Adversarial Sampling. In AAAI, 2022.

[34] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The Unreasonable Effectiveness
of Deep Features as A Perceptual Metric. In CVPR, 2018.

19

	Introduction
	Related Works
	Diffusion Models and Few-shot Fine-tuning
	Bayesian Neural Networks

	Corruption Stage in Few-shot Fine-tuning
	Observation
	Theoretical Modeling on Few-shot Fine-tuning in DMs
	Explanation of the Corruption Stage.

	Applying BNNs to Few-shot Fine-tuning on DMs
	Motivation
	Formulation

	Experiments
	Comparisons
	Generalization
	Ablation Study

	Conclusion
	Drivation of Eq. (2)
	Details of Applying BNNs
	Applying BNNs on Different Few-shot Fine-tuning Methods
	Details of the Validation Experiments
	Metrics
	Settings of Fine-tuning
	Few-shot Fine-tuning Hyper-parameters
	Training Setting for DMs with Different Architectures

	Best-case v.s. Average-case Generation
	User Study
	Limitations and Future Work
	Broader Impact
	More Visualizations

