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Introduction

Spectral Expectation Bound Regularization

Background: Bayesian neural networks Theorem 1 presents that the expectation of disturbance of the output 1n a layer of Bayesian

have been widely used in many applications = = heural network 1s bounded by the expectation of the spectral norm of parameter matrix
because of the distinctive probabilistic repre- E||W |2, the length of the perturbation vector ||£||, and the Lipschitz constant of the activation

sentation framework. Even though Bayesian == function Lip(f).

neural networks have been found more ro-
bust to adversarial attacks compared with
vanilla neural networks, their ability to deal
with adversarial noises in practice 1s still
limited.

Theorem 1 Consider function fw(x) = f(Wx + b), where the activation function f(-) is
Lipschitz continuous with Lipschitz constant Lip(f). For any perturbation & with norm || &
we have

b

Cw || fw (x4 &) — fw(x)|| < Lip(f) - E[[W]l2 - [[€]l,

Goal: Improve the adversarial robustness of

Bayesian neural networks. Where ||W ||o represents the spectral norm of matrix W.

Key Contributions:

e Apply the Lipschitz constraint 1n
Bayesian neural networks, and propose
Spectral Expectation Bound Regular-
1zation (SEBR) method to enhance the
adversarial robustness.

e Prove that SEBR reduces the uncertainty
effectively 1n theoretical analysis, and
provide another explanation of the model
robustness.

e Verity the theory and the effectiveness of
the proposed method by experiments un-
der multiple situations.

To accelerate the training process, we propose a method to fast estimate the upper bound of
2|7V || analytically.

Theorem 2 Consider a Gaussian random matrix W € R™*", where W;; ~ N (M,;, A%j)

with M, A € R™*"™, Suppose G € R™*" is a zero-mean Gaussian random matrix with the
same variance, l1.e., Gij ~ N (O, Azzj). We have

44!

Wil < [[M||2+

C (maX |A; .|| + max ||A. ;|| + Emax ‘Gij‘> ;
? J

¢,

where c is a constant independent of W .

Adding the upper bound of E || |5 in each layer as a regularisation term into the loss func-
tion, we propose our Spectral Expectation Bound Regularization (SEBR) method.

Influence on Uncertainties
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Experiments & Results

Verification
e The difference between the upper-bound e The training with SEBR significantly re-

and the un-biased estimated value keeps duces the amount of time cost for train-
stable and their variation trends are syn- 1ng compared with the direct optimization
chronous. method.

e SEBR not only reduces the upper bound
itselt but also reduces the un-biased eval-

Variation trends 1n training

uated value. | [ ———
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Influence of the parameter \
Using a suitable A 1s important.
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Improvements on Adversarial Robustness

Our SEBR method can reduce the epistemic uncertainty on the out-

put of a Bayesian neural network model.

Models trained with SEBR have both lower aleatoric uncertainties
and lower epistemic uncertainties.

Theorem 3 Consider a Bayesian neural network with only a linear

layer fw(x) = Wx

H!. With sufficient sampling times, we have

H < H,.

b, where x € R™, W & R™xX"
the epistemic uncertainty (following the definition in Equation of the
output after one step gradient descent without SEBR as H ., and the
epistemic uncertainty after one step gradient descent with SEBR as
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Additionally, the aleatoric uncertainty 1s also reduced because of the

optimization on the spectral norm of the mean matrix || M||5.

(a) Aleatoric Uncertainty (b) Epistemic Uncertainty

Model  Dataset Attack Norm Acc. wio. SEBR Ace. w.SEBR A  The models trained with SEBR are more ro-
/ 0 97.05 + 0.38 96.83 + 0.48 —0.22 . . .
o wmmaos woaioe 19 bust on defending all kinds of noises.
mep  MNISTO 03 5064021  24.54+865 +19.48
0.04 81.99 + 1.05 R3.67 + 0.67 + 1.68 Model Dataset Attack Norm Acc. w/o. SEBR Acc. w. SEBR A
PGD  0.16 4.20 & 0.84 9.54 4 2.82 +5.34 /0 97224027  9694+039  —0.28
0.22 1.55 £ 0.35 3.184+1.52  +1.63 _ 0.04  9287+£027  92.084+012  —0.79
- - - _O_OZI - - _856?4}:_2_.5_2_ - _8_6_151;: 5;6_ - - —65—()— - N AdM%P' _ MNIST 0.3 9.94 + 0.13 33.09 £+ 8.23 + 23.15
. . . . . + U. V. rammg ———————————————————————————————————
0.04  9257+040  91.874+026  —0.70
Bayesian VINIST FGSM  0.08 55.98 =+ 4.40 60.27 +8.65  +4.29 PGD 016 40051539  40.66L418 061
CNN 014 1816£0.57  2255+11.23 +4.39 022 11154570 16474357  +5.32
0.04 82.91 & 2.63 85.10 £2.96  +2.19
/ 0 98.80+0.19  98.77+0.08  —0.12
PGD 0.08 36.53 + 5.85 49.20 £+ 10.75 + 12.67 - == _O_OZI - - _96 2—3—:|:—0—4—0— - —9—5 _E)EE:_I: (_) 53— - —:0—2—7— -
0.14 9.88 £ 2.02 12.33 +5.31 +2.45 Bayesian FGSM 0.2 62.344+4.70  63.204+4.10  +0.86
/ 0 84.3840.37  78.75+£0.83  —5.63 oAl MRS 044 11864217 14184082 +282
0.04 60.96 + 0.24 62.06+1.15  +1.10 ' . 0.04  95.98+040 95794024  —0.19
: : FGSM 0.1 24.29 4+ 1.16 31.654+1.25 +7.36 PGD 0.2 26.17 £ 4.39 30.06 £ 3.92 +3.89
Bayesian  Fashion
l\}/{ILP MNIST 0;2_ - _1;99 E—L_O‘_5Z - %ég_i_o_j?_ ) __tz_.ﬁ_()_ _ 0.44 6.85 + 1.67 R.78 +1.07 +1.93
0.04 59.86 + 0.34 61.80+1.13  +1.94
PGD 0.1 19.18 £1.01 2067 +1.22  +10.49
0.2 0.44 +0.14 2.71 £ 0.60 +2.27
o0 8745x0.57 84.83+0.33 = —-2.62 E] A R E]
0.04  40.82+1.86  46.03+4.22  +5.21 . . o Smd i
Bayesian Fashion FOSM  0.08 15.89 +0.97 18.96 +5.00  +3.07 GltHllb RepOSltOI'y. R e Tt o
CNN  MNIST __ 0.1 1024031  11.97£3.95  +173 ATSTIGSIJTU / SEBR . f'f:.;?ffszzz rrr
004  3281+1.70 39924325 +7.11 il TN, aginnit
PGD  0.06 15.03 £ 2.03 20.87 £4.00  +5.84 R TR e X 5 A
008  5.62+0.73  927+1.62  +3.65 [@) i




