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Background

e Bayesian neural networks have been widely used in many applications.
e Adversarial sensitivity is a common problem of deep neural network
models, including Bayesian neural networks.

e Even though Bayesian neural networks have been found more robust to
adversarial attacks, their ability to deal with adversarial noises in practice
is still limited.



A Theoretical Point of Penetration

e It is proved that a Bayesian neural network model will become more
robust if E||W/||2 of each layer get restricted.

Consider function fw(x) = f(Wx + b), where the activation function
f(-) is Lipschitz continuous with Lipschitz constant Lip(f). For any
perturbation € with norm ||€||, we have

Ew [[fw(x + €) — fw(x)Il < Lip(f) - E[W[]2 - [[£]l. (1)
where ||W ||z represents the spectral norm of matrix W, and it is de-
fined as
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Naive method to restrict E| W/||»

How to restrict E||W/||» in practice? A naive method:

L
o A
minimize L+ EE(EHWIHQZ (3)

The expectation is estimated by Monte Carlo sampling (K times). The
spectral norm is calculated by Power Iteration (N iterations) method.

The time complexity is O(KN).



Faster Estimation

A substitution: Estimation of its upper bound.

Consider a Gaussian random matrix W € R™*", where W;; ~ N(Mj, A7)
with M, A € R™". Suppose G € R™" s a zero-mean Gaussian random
matrix with the same variance, i.e., Gy ~ N(0, A}). We have

BIWla < M-+ ¢ (max]|A, |+ max |4, + Emax|G,[) . ()

where c is a constant independent of W.

The estimation of the upper bound is faster: O(K + N)

Denote Ls as half of the square of the upper bound of E||W/||2 in each layer.
Add it into the loss function:
min\iNmize L+XN-Ls. (5)

The method is named as Spectral Expectation Bound Regularization (SEBR).



Verifications

e The upper bounds reflect the variation trends of real values accurately.
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e The real values get decreased bacause of the usage of SEBR.
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e The time costs get reduced compared with the naive method.

Method Avg. time per epoch
Reg. on E||W||2 1654.8 (s)
SEBR 410.5 (s)

Table 1. Time cost comparison between SEBR and the direct reg-
ularization on E||W||,.



Influence on Uncertainty

The epistemic uncertainty of the model output gets reduced by SEBR:

Consider a Bayesian neural network with only a linear layer fiy(x) =
Wx + b, where x € R", W € R™". Denote the epistemic uncertainty
of the output after one step gradient descent without SEBR as H., and
the epistemic uncertainty after one step gradient descent with SEBR as
H.. With sufficient sample times, we have

H. < H.. (6)

It verifies the robustness of the model from another point of view.



Verification on Uncertainty Decrease

Experiments on the verification of the decrease of the output uncertainty.
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Figure 4. Uncertainties measured by Bayesian neural networks
on data with adversarial noises. Models trained with SEBR have
lower uncertainty on the predictions. Best viewed in color.



Improvement on Adversarial Robustness

Experiments on multiple structures (i.e., MLP and CNN), multiple datasets
(MNIST and Fashion-MNIST), and multiple attacks (i.e., FGSM and PGD)
verify the efficiency of the proposed method.

Model  Dataset Attack Noise foonmorm Acc. wio. SEBR (%) Acc. w. SEBR (%) AAvg. Improv. (%)

/ 0 0 97.05 £ 0.38 96.83 +0.48 —0.22

. 83.83 £ 0.51 X
Bayesian FGSM medium  0.16 8.97+0.28 +3472
MLp  MNIST 5.06 + 0.21
small 004 81.99 £ 1.05 83.67+0.67 +168
PGD medium 016 4204084 9544282 +534
large 0.22 1554035 3184152 +163
/ 0 0 98.88+0.27 98.70 +0.04 —0.18
small 004 85.64 +2.52 86.14+£2.76 +0.50
Bayesian FGSM medium  0.08 55.98 £ 4.40 60.27 £ 8.65 +429
CNN  MNIST 18.16 £ 0.57 2255£11.23 +439
small 0.04 82.91 £2.63 85.10 £2.96 +2.19
PGD medium 008 36.53 £5.85 49.20£10.75 +12.67
large 0.14 9.88 £ 2.02 12.33 £5.31
/ 0 0 84.38 £0.37 78.75+£0.83
small  0.04 60.96 £ 0.24 62.06£1.15
Bayesian Fashion FOSM medium 0.1 2420 £1.16 3165+1.25
MLP  MNIST large 02 1.99 +0.57 459%0.75
small 004 59.86 £ 0.34 6180+£113
PGD medium 0.1 19.18 4+ 1.01 20.67+1.22
large 0.2 0.44 £0.14 2.71 £0.60
/ 0 0 87.45 £ 0.57 8483+0.33
small 0,04 40824186 1603422
Bayesian  Fashion i 15.89 % 0.97 18.96 % 5.00
CNN  MNIST 10244031 11.97 +3.95
small 004 3281£1.70 39924325
PGD  medium  0.06 15.03 4+ 2.03 20,87+ 4.00
large 0.08 5.62+0.73 9.27+1.62

Table 2. Comparison on the Robustness of Models without SEBR and with SEBR. The mean value and maximum deviation of three runs
are reported.
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Improvement on Adversarial Robustness

Experiments on more complex structure (i.e., VGG), more complex datasets
(CIFAR-10/100) further verify the efficiency of the proposed method.

Dataset Attack noise £, w/o. SEBR w. SEBR

/ 0 91.65 92.09

0.005 58.65 6574

FGSM 0.0l 42.70 54.78
CIEARIO . 002 38278 4376

0.005 46.33 50.40

PGD 0.1 9.73 16.11

0.02 2.31 295

/ 0 66.94 66.56

0.002 45.96 4767

FGSM  0.01 17.08 21.18

CIFAR100 0.02 12.52 15.97
T 0.002 4472 4685

PGD 0.0l 2.91 5.04

0.02 0.95 1.95

Table S1. Experiments on Bayesian CNN with VGG architecture.
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