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Introduction

® Problem: Adding imperceivable noises to the training data to
confuse classifier in testing.
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Problem formulation

: i ?9|1(Iu5ion
The learning target of a neural network fy with parameter 0 is
0" = i
argmin > [£(fo(2),) ®
(z,y)~D
Noise generator: g
v, [|ge(z)] oo < €
€ - (tanh(+)) in the last layer is used.

In this work, an encoder-decoder network with act|vat|on\‘
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Expenment:

Conclusion

Problem formulation

The task is formulated into

Task formulation

max Z fg* (x), )}
(z,y)~D

0% (&) = arg mm Z

s.t.

3
(fo (z+ ge(2)), )] ©

(z,y)~D
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® The equality constraint can be relaxed into

91 —91;1 — VQ

® The basic idea is to alternatively update fy on noisy data via
gradient descent.and g¢ on clean data over gradient ascent
® However, fp and g¢ won't converge in practice

(4)
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Optimization

® Collecting the update trajectories for fy
® Update g¢ based on such trajectories
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Figure 1: An overview for learning to confuse: Decoupling the alternating update for fo and ge

Il. update g;
Implementation trick: save g¢ instead of fjy
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Label specific adversaries

® |t can be easily transfer to the label specific conditions.

Label specific adversaries

Replace

max > L&) (@), )] (5)

(z,y)~D

into

min > (£ (fore@)im®)] (6)
(z,y)~D

where 7 is a predefined label transformation function.
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Performance Evaluation

® The test accuracy obviously dropped when trained on the
adversarial datasets.

MNIST ImageNet CIFAR-10
Clean Data 99.32+£0.05 | 88.5+232 | 77.28+0.17
Adversarial Data | 0.256£0.04 | 54.2 £ 11.19 | 28.77 £ 2.80

® The classifier trained on the adversarial data cannot
differentiate the clean samples.
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Effect of varying parameters

® There is a sudden drop in performance when the perturbation
constraint e exceeds 0.15.

® The proposed method performs better than random flip.
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Figure 5: Varying the ratio of adversaries
Figure 4: Effect of varying e. under different e.
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Evaluation of Transferability

It transfers very well on even non-NN classifiers, e.g., random
forest and SVM.
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Generalization Gap

® A clear generalization gap is observed during the training
process.

It is conjectured that the deep model tends to overfit towards
the adversarial noises.
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Figure 8: Learning curves for fy
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Validation and Linear Hypothesis

® The model performs well when taking only adversarial noises
as inputs.

® One possible explanation is the linearity inside deep models

Table 2: Prediction accuracy taking only
noises as inputs. That is, the accuracy be-

tween the true label and fg(ge(z)) where  is
the clean sample.

Noiserain | Noisees
: MNIST 95.62 95.15
. ) TmageNet | 88.87 93.00
Figure 9: Clean samples and their correspond- CIFAR-10 7857 72.98
ing adversarial noises for MNIST, CIFAR-10
and ImageNet
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Weight Visualizations

® The victim SVM weights went to the opposite direction and
tend to overfits on image corners.
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data. Bottom row: Weights trained on adversarial training data.

Figure 10: LinearSVM weights visualization for MNIST. Top row: Weights trained on clean training
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Label Specific Adversaries

® Price: test accuracy increases from 0.25 +0.04 to 1.48 +0.21.

® FEffect: Success rate for targeting the desired specific label:
79.7 £ 0.38.
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(a) Clean Training Data (b) Non-label specific setting (c) Label-specific setting
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Conclusion

® This paper proposed a general framework for generating
training time adversarial data

® A simple yet effective training scheme to train both networks
® Experiments on image data confirm the effectiveness
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Related consecutive work

A concurrent work minimizes the gradients of weights to make
models harder to converge in transfer learning *

“Inversely adversarial noise” generated by PGD has a similar effect
and is used to synthesize Unlearnable Examples 2

Gradient manipulation is used to generate poisoned dataset 3.
Adversarial examples make stronger poisons .

Adversarial training serves as a defense with theoretical guarantee °

! Juncheng Shen, Xiaolei Zhu, De Ma. TensorClog: An Imperceptible Poisoning Attack on Deep Neural Network
Applications, in IEEE Access, vol. 7, pp. 41498-41506, 2019

2 Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, Yisen Wang. Unlearnable Examples:
Making Personal Data Unexploitable. In ICLR, 2021.

3 Liam H Fowl, Ping-yeh Chiang, Micah Goldblum, Jonas Geiping, Arpit Amit Bansal, Wojciech Czaja, Tom
Goldstein. Protecting Proprietary Data: Poisoning for Secure Dataset Release. In arxiv preprint, 2103.02683.

4 Liam H Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, Tom
Goldstein. Adversarial Examples Make Strong Poisons. In NeurlPS, 2021.
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Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, Songcan Chen. Better Safe Than Sorry & UNIVERSITY
Preventing Delusive Adversaries with Adversarial Training.

In NeurlPS, 2021.
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